ancillary services

Faraday Grid Benefits - High Voltage Network Simulation

Faraday Grid Benefits - High Voltage Network Simulation

WHITE PAPER ATTACHED

The secure operation of modern electricity networks is becoming an increasingly difficult task as grids continuously employ complex interconnections, intermittent non-dispatchable renewable generation, and nonlinear loads. While these actions aim to improve power system reliability and meet sustainable energy requirements, they significantly reduce the system’s fault tolerance, inertia, and damping levels. The Faraday Exchanger (FE) technology delivers key technical and economic benefits, as demonstrated through results obtained from detailed simulations on numerous electrical networks from various countries.

Electricity grids and markets: current status, problems, and opportunities for the Faraday Grid

Electricity grids and markets: current status, problems, and opportunities for the Faraday Grid

White Paper by University of Edinburgh Chancellor’s Fellow Dr Harry van der Weijde analysing the current status of electricity grids and markets considering clean energy goals. The paper finds that the current electricity system is fast approaching a breaking point and will not be able to handle higher levels of renewable energy without substantial new costs that would hit consumers.  Dr van der Weijde concludes that the Faraday Grid can resolve the challenge of increasing renewable energy penetration and preventing the looming threat of doubling or tripling of longer term electricity prices.

Energy Explainer: Electricity Markets

Energy Explainer: Electricity Markets

In order to explain how the lights stay on, we first need to have a broad overview of how electrical networks work. This article gives a review of the evolution of electricity markets over the past century and explains the complex system they have become.