simulation

Faraday Grid Benefits - a New York State Viewpoint

Faraday Grid Benefits - a New York State Viewpoint

The New York State electricity grid’s challenges – similarly to other grids worldwide - derive from the fact that the current network architecture restraints the system’s ability to accommodate shifting electricity uses and generation types.

Reactive problem solving is not sufficient to sustainably provide the system flexibility such rapid changes require. It is a resilient systemic solution that is required to relieve the system from its pressures and provide an opportunity for further innovation.

Faraday Grid Ltd. (Faraday) has developed a completely new technology that provides a systemic, cost-effective solution. Read Jagadeesh Guda’s white paper that documents the techno-economic implications of the Faraday Grid technology in specific to the New York state electricity grid.

Faraday Grid Benefits - High Voltage Network Simulation

Faraday Grid Benefits - High Voltage Network Simulation

WHITE PAPER ATTACHED

The secure operation of modern electricity networks is becoming an increasingly difficult task as grids continuously employ complex interconnections, intermittent non-dispatchable renewable generation, and nonlinear loads. While these actions aim to improve power system reliability and meet sustainable energy requirements, they significantly reduce the system’s fault tolerance, inertia, and damping levels. The Faraday Exchanger (FE) technology delivers key technical and economic benefits, as demonstrated through results obtained from detailed simulations on numerous electrical networks from various countries.

Low Voltage Network Simulation with the Faraday Grid

Low Voltage Network Simulation with the Faraday Grid

When rolled out across a wider system of LV networks, the Faraday Grid technology can enable a quantum shift in energy system architecture to a new decentralised, flexible and reliable system.
Three sets of simulations measuring network performance of LV networks using conventional transformers, Online Tap Changers (OLTCs), and Faraday Exchangers were carried out to demonstrate the Faraday Grid’s superior capabilities. Read the white paper describing the simulation results via the link.