technology

ORIGINS OF DESIGN IN ENGINEERING AND POWER SYSTEMS

STANDING ON THE SHOULDERS OF GIANTS

A BRIEF HISTORY OF DESIGN IN ENGINEERING AND POWER SYSTEMS LEADING TO THE FARADAY GRID

In every era in the history of humanity, innovation and development has been implemented in all areas to simplify the functioning of operating systems and ultimately, to increase efficiency and boost productivity. The Faraday Exchanger builds on the work of key physicists and mathematicians by going back to fundamental principles.

Innovation in the area of power and energy can be dated back to 600 BC, when Thales of Miletus, a Greek philosopher, first wrote about the concept of static electricity. He observed that if one rubbed fur on various materials, such as amber, they could create an electric spark.

Later in the 16th century, scientists such as William Gilbert, who is described by some as the father of electrical engineering, would carry out extensive research into electricity and magnetism, leading to him correctly and most significantly concluding that the earth behaves like a giant magnet.

With discoveries like these, came further findings such as Coulomb’s Law in the 18th Century. French physicist Charles-Augustin de Coulomb defined the law of electrostatic attraction and repulsion. Later in that century, Italian physicist Alessandro Volta created the first electric battery using chemicals and metals. By doing this, Volta proved that electricity could be generated chemically.

Such initial findings paved the way for Danish physicist and chemist Hans Christian Oersted who was the first person to ascertain the relationship between electricity and magnetism. He discovered this by proving that electric currents affected compass needles and created magnetic fields.

Following this, French physicist André-Marie Ampère found that current carrying wires produce forces on each other. He stated that two parallel portions of a circuit would attract one another if the currents in them flowed in the same direction and vice versa.

At the same time, Michael Faraday, one of the most influential scientists in history, was credited with inventing the first electric motor. Following Oersted’s discovery of electromagnetism, Faraday constructed two devices to produce an electromagnetic rotation. Faraday’s inventions and discoveries of electromagnetic induction and the laws of electrolysis have paved the way for inventions such as the modern electric motor, electric generators and transformers as we know them today.

By summarizing and amalgamating the findings of Coulomb, Oersted, Ampère and Faraday, a scientist named James Clerk Maxwell produced four equations that are used today as the basis of electromagnetic theory. He showed that electricity flows through many metals due to the movement of electrons amongst the atoms of the metal. The movement of these electrons produces a magnetic field, the strength of which depends on the number of moving electrons.

These studies and findings have made possible the design and manufacture of the systems that underpin modern life. However, despite the accelerated global development of the past century, the technology in use based on these findings has not fundamentally changed since the invention of the transformer by William Stanley in 1885.  

This lack of cardinal development means that today’s power systems would not be able to cope with the increasing global energy requirements without further increasing greenhouse gas emissions.

Therefore, based on these fundamentals of physics, theory from several academic streams, and using the principles of Artificial Intelligence and network optimisation, The Faraday Grid was designed to eventually replace existing technology and address the world’s global energy problem.

Introducing the energy system of the future to Washington DC

Introducing the energy system of the future to Washington DC

Our society has great aspirations for the future. As progress accelerates in every area of our lives, so does the energy system – the very underpinning of our economy – transition as well. However, an energy future shaped by evolving innovation cannot be not be realized while relying on a grid that is fundamentally no longer fit-for-purpose. On March 28 we introduced our vision for the energy system of the future to the American people. Watch our videos of the event here.

The Future of Energy is Shared Technology Innovation

The Future of Energy is Shared Technology Innovation

Founder and CTO Matthew Williams will represent both Faraday Grid and LF Energy at DistribuTECH in New Orleans this year, where he will deliver a talk on why he believes an open source system is a necessary foundation for a prosperous energy future. Read this article in which Matthew explains how open source will fuel innovation in energy and find time and date for his presentation below.

Encouraging innovation in regulated utilities: consultation - response from Faraday Grid

Encouraging innovation in regulated utilities: consultation - response from Faraday Grid

The HM Treasury’s and Department for Business, Energy & Industrial Strategy (BEIS) initiated a consultation focusing on innovation in utilities, with the aim to “ensure our system of utilities regulation is fit for the future.” As an innovator of technology that will radically transform the market and with a growing global presence, Faraday Grid is keen to engage in the conversation and submitted a response to BEIS, which can be accessed here.

Blockchain and energy – a solution looking for a problem to solve?

Blockchain and energy – a solution looking for a problem to solve?

Blockchain has been a buzzword in many industries over the last couple of years, including the energy sector. However, despite best intentions, blockchain for energy continues to struggle to get beyond the hype and provide any real benefit. Instead, it adds complexity to the electricity system rather than solving the critical systemic challenge to provide people with clean, reliable and low cost power – the energy ‘trilemma’. Ready Founder & Chief Technology Officer Matthew Williams’s article that originally appeared on Current+.

The Energy Trilemma is far from being resolved - Response to Greg Clark

The Energy Trilemma is far from being resolved - Response to Greg Clark

In this response to Greg Clark MP, Founder & Chief Technology Officer Matthew Williams and Chief Economist & Head of Government Affairs Richard Dowling together challenge the idea that the Energy Trilemma is “over” and examine how greater amounts of renewables will affect energy security and energy equity, should there be no change to the current grid.

Reinventing the Electricity Grid for Continuing Prosperity and Innovation

Reinventing the Electricity Grid for Continuing Prosperity and Innovation

The European Utility Week, a summit for key players in the energy sphere working towards a fully integrated and interconnected electricity system and market in Europe took place in Vienna this year. Read CEO Andrew’s Scobie’s speech on why the Faraday Grid is the necessary evolution of the energy system.

Prosperity, Academia, and the Faraday Grid Prize for Research for Industry

Prosperity, Academia, and the Faraday Grid Prize for Research for Industry

Last week, Founder and Chief Technology Officer Matthew Williams travelled to the University of Manchester to award the first ever Faraday Grid Prize for Research for Industry. This prize recognises rigorous academic research with strong industrial applicability. It is also a great example of Faraday’s drive to enable collaboration among the academic and private sector thereby catalysing societal progress. Read Matthew’s article below to find out why he believes collaboration is a key pillar for building future prosperity.

Faraday Grid Benefits - a New York State Viewpoint

Faraday Grid Benefits - a New York State Viewpoint

The New York State electricity grid’s challenges – similarly to other grids worldwide - derive from the fact that the current network architecture restraints the system’s ability to accommodate shifting electricity uses and generation types.

Reactive problem solving is not sufficient to sustainably provide the system flexibility such rapid changes require. It is a resilient systemic solution that is required to relieve the system from its pressures and provide an opportunity for further innovation.

Faraday Grid Ltd. (Faraday) has developed a completely new technology that provides a systemic, cost-effective solution. Read Jagadeesh Guda’s white paper that documents the techno-economic implications of the Faraday Grid technology in specific to the New York state electricity grid.

Faraday Exchanger Performance Live Demonstration

Faraday Exchanger Performance Live Demonstration

Live demonstration of the Faraday Exchanger performance as unveiled at our 12 December 2017 launch event at the National Museum of Scotland. The Faraday Exchanger dynamically controls voltage, power factor and harmonics.

Preview to The Faraday Grid Launch at the National Museum of Scotland

Preview to The Faraday Grid Launch at the National Museum of Scotland

It is humbling to imagine that come the evening of Tuesday 12th December, the Faraday Grid will take centre stage in the Grand Hall, with more than 150 people from the fields of industry, finance and academia, as well as friends and family present. A full scale prototype of the Faraday Exchanger will be unveiled to the audience for a live demonstration. This approach really does highlight the confidence we have in our technology, which has been subject to years of R&D and simulation testing.

Modernising electricity grids: from smart grids to blockchain - and The Faraday Grid

Modernising electricity grids: from smart grids to blockchain - and The Faraday Grid

A modern grid supplying modern electricity demands should be able to provide environmentally friendly energy securely and at an affordable price at once. There are a number of technology pathways being suggested to modernise the electricity grid, and adapt it to the new reality of distributed variable renewable generation. This article gives an overview of these technologies.

Design Origins of the Faraday Exchanger - A brief history of discoveries in physics

Design Origins of the Faraday Exchanger - A brief history of discoveries in physics

In every era in the history of humanity, innovation and development has been implemented in all areas to simplify the functioning of operating systems and ultimately, increase efficiency and boost productivity. The Faraday Exchanger builds on the work of key physicists and mathematicians by going back to fundamental principles. This article gives an overview of the most significant scientific breakthroughs leading up to The Faraday Exchanger.